• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Lin, W. (Lin, W..) [1] | Lu, Q. (Lu, Q..) [2] | Chen, Y. (Chen, Y..) [3] | Qiu, L. (Qiu, L..) [4] | Ji, Y. (Ji, Y..) [5] | Guan, L. (Guan, L..) [6] | Ding, X. (Ding, X..) [7]

Indexed by:

Scopus

Abstract:

Sodium-ion batteries (SIBs) have attracted much attention for large-scale energy storage applications due to the abundant sodium reserves and low cost. However, their use in high-altitude, deep-sea, and aerospace applications has been affected by the low-temperature environment. Extreme temperatures lead to a decrease in the diffusion coefficient of the sodium ion, slow migration kinetics, formation of sodium dendrites, and severe interfacial reactions. This, coupled with the tendency of sodium reactions to undergo irreversible phase transitions, can seriously degrade the electrochemical and safety performance of SIBs. Therefore, the rational design and modification of cathode materials are crucial for optimizing the low-temperature performance of SIBs. In this work, the research progress of relevant cathode materials for SIBs, including layered metal oxides, polyanionic compounds, and Prussian blue analogs in low-temperature environments is summarized. Layered metal oxide materials undergo further phase and structural changes during electrochemical reactions at low temperatures, thus their life cycle is somewhat limited. The large anionic groups of polyanionic materials limits the energy density of the materials. The synthesis of high-purity Prussian blue analogs remains a major challenge under low-temperature conditions. Existing strategies, such as surface coating, lattice doping, and structure optimization, can ameliorate the issues mentioned above. In addition, an analysis of the relationship between superior electrochemical performance and the modification of cathode materials is presented. A summary of the status and challenges of the development of SIBs at low temperatures is provided. The great limitations of low temperature on the kinetics during charging and discharging, as well as the unavoidable interaction between positive and negative electrode materials and electrolyte remain the most relevant challenges. This review will provide a reference for further development of SIBs cathode materials at low temperatures. © 2024 Editorial office of Energy Storage Science and Technology. All rights reserved.

Keyword:

cathode materials low temperature performance modification research sodium ion batteries

Community:

  • [ 1 ] [Lin W.]College of Chemistry and Materials Science, Fujian Normal University, Fujian, Fuzhou, 350007, China
  • [ 2 ] [Lu Q.]College of Chemistry and Materials Science, Fujian Normal University, Fujian, Fuzhou, 350007, China
  • [ 3 ] [Chen Y.]College of Chemistry and Materials Science, Fujian Normal University, Fujian, Fuzhou, 350007, China
  • [ 4 ] [Qiu L.]College of Chemistry and Materials Science, Fujian Normal University, Fujian, Fuzhou, 350007, China
  • [ 5 ] [Ji Y.]College of Chemistry and Materials Science, Fujian Normal University, Fujian, Fuzhou, 350007, China
  • [ 6 ] [Guan L.]College of Chemistry and Materials Science, Fujian Normal University, Fujian, Fuzhou, 350007, China
  • [ 7 ] [Ding X.]College of Chemistry and Materials Science, Fujian Normal University, Fujian, Fuzhou, 350007, China
  • [ 8 ] [Ding X.]Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350108, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Energy Storage Science and Technology

ISSN: 2095-4239

Year: 2024

Issue: 7

Volume: 13

Page: 2348-2360

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:174/9999121
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1