Indexed by:
Abstract:
We demonstrate an electrostatic confinement-induced charge transfer pathway in a supramolecular photocatalyst comprising of an ionic covalent organic framework (COF) and cationic metal complexes. The dynamic electrostatic interactions not only attract cations around the COF to accept photogenerated electrons, but also allow for a retention of homogeneous catalytic characters of complexes, making a subtle balance. Accordingly, the electrostatic confinement effect facilitates the forward electron transfer from a photoexcited COF to cationic Co complex, realizing a remarkable photocatalytic CO2 reduction performance. Its catalytic efficiency is far superior to the supramolecular counterparts with Van-der-Waals or hydrogen bonding interactions. This work presents an insight for enhancing charge transfer in supramolecular systems, and provides an effective approach for construction of highly efficient photocatalysts.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
ISSN: 1433-7851
Year: 2024
Issue: 6
Volume: 64
1 6 . 1 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3