Indexed by:
Abstract:
Developing high-performance Ca-based materials that can work for long-term heat transfer and storage in concentrated solar power plants is crucial to achieve the large-scale conversion of solar photon fluxes to dispatchable electricity. This work demonstrates that a series of Mn, Zr co-doped CaCO3 nanomaterials with the 3D ordered macroporous (3DOM) skeletons are successfully prepared by a novel strategy of templated metal salt co-precipitation. The characterization results indicate that a majority of Zr and Mn are atomically dispersed into the highly-crystallized CaCO3 framework, whereas a minor amount of Mn is present in the form of CaMnO3 nanoparticles (NPs). The optimal 3DOM material made by templating with PS microspheres with a diameter of approximate to 350 nm, 3DOM-Ca80Mn10Zr10, shows a solar light absorptance of approximate to 74.1% and an initial energy storage density of 1706.4 kJ kg(-1). Importantly, it gives an impressive energy storage density loss of < 6.0% and maintains above 1600 kJ kg(-1) after 125 cycles. The density functional theory calculations reveal that the co-doping of Mn and Zr into the CaO crystal lattice offers a strong affinity to [Ca4O4] clusters, as a result, the anti-sintering of CaO NPs is significantly enhanced under high temperature.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCED SCIENCE
Year: 2024
Issue: 6
Volume: 12
1 4 . 3 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: