Indexed by:
Abstract:
Simultaneously enhancing selectivity and stability on supported propane dehydrogenation (PDH) catalysts remains a formidable challenge. Here, we report a combined static and dynamic strategy to address these issues synergistically. Firstly, we demonstrate a feasible sol-gel method for preparing atomically-dispersed Bi-decorated metal nanoparticle catalysts (MBi/Al2O3, M=Fe, Co, Ni, and Zn). In PDH testing, the total selectivity of by-products (CH4 and C2H6) significantly decreases to 4 % for CoBi catalysts due to the static Bi-doping, compared with 16 % for Co-supported catalysts. Secondly, to enhance catalytic stability, we introduce a dynamic trace CO2 co-feeding route. 10CoBi/Al2O3 catalysts exhibit superior durability against coke formation for 330 hours in PDH under a 40 % C3H8 atmosphere followed by pure C3H8 conditions at 600 degrees C while maintaining propylene selectivity at 96 %. Notably, introducing trace CO2 leads to a remarkable 6-fold decrease in the deactivation rate constant (k(d)). Multiple characterizations and density functional theory calculations reveal that charge transfer from atomically-distributed Bi to Co nanoparticles benefits lowering the energy of C3H6 adsorption thereby suppressing by-products. Furthermore, the dynamic co-feeding of trace CO2 facilitates coke removal, suppressing catalyst deactivation. The static Bi-doping and dynamic trace CO2 co-feeding strategy contributes simultaneously to increased selectivity and stability on supported PDH catalysts.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
ISSN: 1433-7851
Year: 2024
Issue: 3
Volume: 64
1 6 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: