Indexed by:
Abstract:
Mesoporous bioactive glasses (MBGs) are gaining recognition in bone tissue engineering for their osteoblast differentiation-inducing properties and customizable structures. However, the challenge of peri-implantitis has hindered their broader application. To address this, double transition metal TiNbCTx MXene acted as near-infrared (NIR) photothermal agent, has been integrated with MBG nanospheres to develop novel multifunctional TiNbCTx/MBG (TNC/MBG) nanocomposites in this work. The results demonstrate that the TNC/MBG composites feature uniform mesoporous spherical MBG nanoparticles on TiNbCTx nanosheets, boasting a significantly enhanced specific surface area of up to 444.74 m(2) g(-1) and a more negative zeta potential than pristine MBG. Importantly, the TNC/MBG nanocomposites can effectively promote apatite formation, as well as the proliferation and viability of MC3T3-E1 cells. Moreover, it is highlighted that the TNC/MBG nanocomposites display remarkable photothermal conversion efficiency and stability, leading to over 95% antibacterial inhibition rates against both S. aureus and E. coli under NIR irradiation. These findings offer an appealing strategy to develop multifunctional TNC/MBG nanocomposites with enhanced biological activity and robust antibacterial properties, which shows great potential for various biomedical applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCED FUNCTIONAL MATERIALS
ISSN: 1616-301X
Year: 2025
1 8 . 5 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0