Indexed by:
Abstract:
In this study, we investigated the ameliorative effects of selenium-enriched Lactobacillus fermentum FZU3103 (Lf@Se) and its pathway on alcoholic liver injury (ALI) in mice. The results showed that Lf@Se was superior to Lf and inorganic selenium in alleviating ALI. Oral Lf@Se effectively prevented lipid metabolism disorders, improved liver function, promoted alcohol metabolism, and alleviated liver oxidative damage in mice. 16S amplicons sequencing indicated that Lf@Se intervention modulated intestinal flora homeostasis by increasing (decreasing) the abundance of beneficial bacteria (harmful bacteria), which is associated with the improvement of liver function. Besides, Lf@Se intervention altered the liver metabolic profile, and the characteristic biomarkers were mainly involved in tyrosine metabolism, retinol metabolism, galactose metabolism, and primary bile acid biosynthesis. Additionally, Lf@Se intervention regulated liver gene expression for lipid metabolism and oxidative stress. Western blot analysis revealed increased expression levels of intestinal tight junction proteins after Lf@Se intervention, thereby ameliorating alcohol-induced intestinal barrier damage. © 2024 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Agricultural and Food Chemistry
ISSN: 0021-8561
Year: 2025
Issue: 5
Volume: 73
Page: 3232-3245
5 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: