Indexed by:
Abstract:
Pickering emulsions are dispersions of two immiscible liquids stabilized by surface-active colloidal nano-/microparticles. Their compartmentalized structures closely resemble the characteristics of cellular and subcellular systems, enabling the development of biomimetic microreactors that enhance catalytic processes. By enlarging interfacial areas while effectively partitioning reactants into their preferred phases, Pickering emulsion-based microreactors improve kinetic parameters and prevent unwanted interactions. The adaptability of Pickering emulsions is further augmented through modifications to the properties and composition of the particle emulsifiers, rendering them multifunctional and facilitating efficient reactions between immiscible phases, such as oil and water, especially when the emulsifiers themselves act as catalysts. This review summarizes recent advances in Pickering emulsion-based biomimetic microreactors, focusing on the versatile choice of various particles, design principles, and their applications in facilitating biphasic catalysis in a biomimetic way. We also discuss the challenges and future perspectives for further refining these microreactors for enhanced biphasic catalytic processes.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MATERIALS CHEMISTRY FRONTIERS
Year: 2025
Issue: 8
Volume: 9
Page: 1290-1311
6 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: