Indexed by:
Abstract:
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used anode interlayer (AIL) in organic solar cells (OSCs). However, the intrinsic acidity and hygroscopic nature of PSS ions in PEDOT:PSS have been proven to cause electrode corrosion and deteriorate device performance. Herein, a straightforward method is reported to enhance the water resistance of PEDOT:PSS by incorporating tris[bis(methoxymethyl)amino]-1,3,5-triazine (HM) as a cross-linker. The cross-linking reaction between PSS and HM neutralizes the acidity of PEDOT:PSS and forms a stable, hydrophobic network. Additionally, the aggregation morphology of PEDOT:PSS was regulated by HM, improving the conductivity and work function, thereby resulting in enhanced hole extraction and transport ability. Devices incorporating PEDOT:PSS-HM demonstrated improved power conversion efficiency (PCE) of 19.03% compared to 17.88% for those using standard PEDOT:PSS. The neutral pH and water-resistant nature of PEDOT:PSS-HM effectively improved the long-term stability of OSCs with a T80 of over 400 h under continuous illumination. Moreover, after aging the PEDOT: PSS-HM film for 216 h at 80% relative humidity and 40 degrees C, it can be still used as AIL to fabricate efficient OSC devices. This work presents a simple and effective approach to preparing a non-corrosive and stable PEDOT derivative, offering valuable insights for the development of high-performance AIL materials.
Keyword:
Reprint 's Address:
Version:
Source :
SCIENCE CHINA-MATERIALS
ISSN: 2095-8226
Year: 2025
Issue: 5
Volume: 68
Page: 1452-1461
6 . 8 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2