Indexed by:
Abstract:
Oxygen-less dependent Type I photosensitizers (PSs) have emerged as a crucial strategy for enhancing photodynamic therapy efficiency in treating hypoxic tumors. However, solid tumors have normoxia regions situated near functional blood vessels and hypoxia regions in their interiors. To maximize the utilization of oxygen within solid tumors, herein a viable donor optimizing approach is developed to enhance both Type I&II reactive oxygen species generation of PSs. At the same mole concentration, one optimized PS (named DE) generated 9 times more O-1(2) than commercial Type II PS Chlorin e6 upon white light irradiation for 60 s. Compared to the commercial Type I PS Rose Bengal, center dot OH generation by DE is 2.9 times more under the hypoxia condition. With its optimized Type I&II pathway under normoxia and hypoxia conditions, DE is proven to be an efficient PS for solid tumor treatment, offering a promising approach for PS development.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCED HEALTHCARE MATERIALS
ISSN: 2192-2640
Year: 2025
Issue: 13
Volume: 14
1 0 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: