Indexed by:
Abstract:
Inorganic solid electrolyte-based all-solid-state lithium-sulfur batteries (ASSLSBs) have garnered significant attention due to their inherent safety and higher energy density, making them a promising candidate for the upcoming lithium batteries. However, employing sulfur as the active material in all-solid-state composite cathodes introduces two critical challenges: sluggish electrochemical reaction kinetics and insufficient solid-solid contact between the sulfur, conductive additive, and solid electrolyte phases. These issues directly impact battery performance and hinder the commercialization of ASSLSBs. In this comprehensive review, the underlying causes of these issues are first discussed to gain a fundamental understanding of potential improvement directions. Subsequently, we summarize the recent progress in enhancing sulfur reaction kinetics and optimizing solid-solid contact. The fundamental principles, fabrication techniques, and resultant performance enhancement of diverse strategies are systematically categorized, summarized, and evaluated. Finally, the challenges and future outlook of advanced ASSLSB cathode research are discussed at the end of this review. (Figure presented.) © Science China Press 2025.
Keyword:
Reprint 's Address:
Email:
Source :
Science China Materials
ISSN: 2095-8226
Year: 2025
6 . 8 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: