Indexed by:
Abstract:
Amidst the rapid global urbanization and economic integration, coastal cities have undergone significant changes in urban spatial patterns. These changes have further worsened the complex urban thermal environment, making it crucial to study the interaction between human-driven development and natural climate systems. To address the insufficient quantification of marine elements in the urban planning of subtropical coastal zones, this study takes Xiamen, a typical deep-water port city, as an example to construct a spatial analysis framework integrating marine boundary layer parameters. This research employs interpolation simulation, atmospheric correction, and other techniques to simulate the inversion of land use and Landsat 8 data, deriving urban morphological elements and Land Surface Temperature (LST) data. These data were then assigned to 500 m grids for analysis. A bivariate spatial auto-correlation model was applied to examine the relationship between urban carbon emission and LST. The study area was categorized based on the influence of marine factors, and the spatial relationships between urban morphological elements and LST were analyzed using a multiscale geographically weighted regression model. Three Xiamen-specific discoveries emerged: (1) the marine exerts a significant thermal mitigation effect on the city, with an average influence range of 7.94 km; (2) the relationship between urban morphology and the thermal environment exhibits notable spatial heterogeneity across different regions; and (3) to mitigate urban thermal environments, connected green corridors should be established in the southern coastal areas of outer districts in regions significantly influenced by the ocean. In areas with less marine influence, spatial complexity should be introduced by disrupting relatively intact blue–green spaces, while regions unaffected by the ocean should focus on increasing green spaces and reducing impervious surfaces and water bodies. These findings directly inform Xiamen’s 2035 Master Plan for combating heat island effects in coastal special economic zones, providing transferable metrics for similar maritime cities. © 2025 by the authors.
Keyword:
Reprint 's Address:
Email:
Source :
Buildings
Year: 2025
Issue: 7
Volume: 15
3 . 1 0 0
JCR@2023
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: