Indexed by:
Abstract:
Under the dual pressures of global climate change and rapid urbanization, urban drainage systems (UDS) face severe challenges caused by extreme precipitation events and altered surface hydrological processes. The drainage paradigm is shifting toward resilient systems integrating grey and green infrastructure, necessitating a comprehensive review of the design and operation of grey infrastructure. This study systematically summarizes advances in urban stormwater process-wide regulation, focusing on drainage network design optimization, siting and control strategies for flow control devices (FCDs), and coordinated management of Quasi-Detention Basins (QDBs). Through graph theory-driven topological design, real-time control (RTC) technologies, and multi-objective optimization algorithms (e.g., genetic algorithms, particle swarm optimization), the research demonstrates that decentralized network layouts, dynamic gate regulation, and stormwater resource utilization significantly enhance system resilience and storage redundancy. Additionally, deep learning applications in flow prediction, flood assessment, and intelligent control exhibit potential to overcome limitations of traditional models. Future research should prioritize improving computational efficiency, optimizing hybrid infrastructure synergies, and integrating deep learning with RTC to establish more resilient and adaptive urban stormwater management frameworks. © 2025 by the authors.
Keyword:
Reprint 's Address:
Email:
Source :
Water (Switzerland)
Year: 2025
Issue: 10
Volume: 17
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: