Indexed by:
Abstract:
Photoelectronic transistors had attracted significant attention in the field of neuromorphic computing, as they integrated efficient sensing, memory, and processing capabilities into a single device. The design of multilayer heterostructures offered novel opportunities for developing multifunctional optoelectronic devices, particularly for neuromorphic optoelectronic devices that required integrated non-volatile memory and excellent optical response characteristics. TIPS-pentacene films with High-quality were successfully prepared through liquid surface growth and evaporation crystallization, and these films were further transferred to target substrates for heterostructure devices. Based on this strategy, a CsPbBr3/PMMA/TIPS-pentacene heterojunction photoelectronics transistor was developed to overcome the limitations of traditional solution-based strategies for preparing multilayer structures. Owing to the ultra-thin and high-quality TIPS-pentacene conductive layer and its excellent interface contact with the underlying film, the composite transistor demonstrated high electrical properties, including high mobility and low subthreshold swing. It exhibited typical synaptic characteristics such as pulsepromotion facilitation (PPF). The device also delivered excellent non-volatile memory characteristics, with multistate memory windows observed under different gate scanning ranges. Based on the strong gate modulation, the photoelectronic transistor array successfully simulated the dark and bright adaptation behaviors of the human visual system. Therefore, the preparation strategy for multifunctional photoelectronic transistors proposed in this work provided an unique perspective for the next generation of artificial neural systems.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ORGANIC ELECTRONICS
ISSN: 1566-1199
Year: 2025
Volume: 144
2 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3