Indexed by:
Abstract:
Topological edge states, emerging at boundaries between regions with distinct topological properties, enable unidirectional transmission with robustness against defects and disorder. However, achieving dual-band operation with high performance remains challenging. Here, we integrate dual-band topological edge states into a valley photonic crystal cavity operating in the mid-infrared region, leveraging triangular scatterers. A key contribution of this work is the simultaneous realization of ultra-high Q-factors (up to 6.1593 × 109) and uniform mode distribution (inverse participation ratio < 2) across both bands. Moreover, the dual-band cavity exhibits exceptional defect tolerance. These findings provide a promising platform for mid-infrared photonic integration, paving the way for high-performance optical cavities in multifunctional photonic systems. © 2025 by the authors.
Keyword:
Reprint 's Address:
Email:
Source :
Photonics
ISSN: 2304-6732
Year: 2025
Issue: 5
Volume: 12
2 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: