Indexed by:
Abstract:
Photocatalysis is a promising strategy for the treatment of dangerous chemical pollutants in the ocean. In this work, a stable copper-based photocatalyst, i.e., {[Cu(BPA)2]2I3}n (1, BPA = 4,4 '-bipyridinium-N-pentanoic acid), exhibited excellent degradation performance in dye pollutant in seawater. According to the structural analysis, this photocatalyst consists of 1-D cationic [Cu(BPA)2]n2n+ infinite chain and two I3- polyiodide anions. In the [Cu(BPA)2]n2n+ chain, the distorted CuO4N2 octahedra are bridged by asymmetric viologen ligand (BPA), which result in a 1-D ladder-shaped chain. Strong C-HO/I hydrogen bonds contribute to the formation of a 2-D layer along bc-plane, in which I3- anions are stacked among the cationic chains. The strong adsorption from ultraviolet to visible regions together with its high charge separation efficiency implies its usage as excellent visible-light-driven catalysis. Interestingly, good photocatalytic performance for the degradation of Rhodamine B (RhB) in seawater can be observed by using this hybrid as photocatalyst. In detail, 90.6% degradation ratio of RhB can be achieved in 150 min under visible light, which was monitored on a UV-Vis spectrum. This work could pave the way for new ocean pollutant treatments for shipping accidents.
Keyword:
Reprint 's Address:
Email:
Source :
MOLECULES
Year: 2025
Issue: 17
Volume: 30
4 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0