Indexed by:
Abstract:
Oxygen evolution reaction (OER) remains the bottleneck of many energy transformation and storage technologies due to the sluggish kinetics. Transition-metal (TM) hydroxide nanosheets with high-valent TM ions possess high intrinsic catalytic activity toward OER. Herein, by taking advantage of the inductive effect, this work presents a facile and universal strategy to fabricate atomic iridium (Ir) incorporated TM hydroxide nanosheets as highly active OER electrocatalysts. As a representative, the fabricated Ir-Ni(OH)(2) (4 wt% Ir) exhibits remarkable OER performance with a low overpotential (235 mV at 10 mA cm(-2)), a small Tafel slope (58.4 mV dec(-1)), and excellent durability (60 h) in alkaline solution, significantly outperforming the benchmark IrO2 and Ni(OH)(2). Mechanism studies unveil that the inductive effect between Ni and Ir endows Ni(OH)(2) with high-valent Ni species, which facilitate the adsorption of nucleophilic intermediates and boost the OER activity and long-term stability of Ir-Ni(OH)(2). More importantly, the reported strategy could be extended to synthesize other monometallic/bimetallic TM hydroxide nanosheets (Co, CoMn) as highly efficient OER electrocatalysts. This work should pave a universal and promising avenue to rationally design and controllably synthesize efficient yet robust OER electrocatalysts in energy-related fields.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2020
Volume: 395
1 3 . 2 7 3
JCR@2020
1 3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 59
SCOPUS Cited Count: 57
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: