Indexed by:
Abstract:
In fluctuation-based optical nanoscopy, investigating high-density labeled subcellular structures with high fidelity has been a significant challenge. In this study, based on super-resolution radial fluctuation (SRRF) microscopy, the joint tagging (JT) strategy is employed to enable fast high-density nanoscopic imaging and tracking. In fixed cell experiment, multiple types of quantum dots with distinguishable fluorescence spectra are jointly tagged to subcellular microtubules. In each spectral channel, the decrease in labeling density guarantees the high-fidelity super-resolution reconstruction using SRRF microscopy. Subsequently, the combination of all spectral channels achieves high-density super-resolution imaging of subcellular microtubules with a resolution of similar to 62 nm using JT assisted SRRF technique. In the live-cell experiment, 3-channel JT is utilized to track the dynamic motions of high-density toxin-induced lipid clusters for 1 minute, achieving the simultaneous tracking of many individual toxin-induced lipid clusters spatially distributed significantly below the optical diffraction limit in living cells.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF BIOPHOTONICS
ISSN: 1864-063X
Year: 2018
Issue: 9
Volume: 11
3 . 7 6 3
JCR@2018
2 . 0 0 0
JCR@2023
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:212
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: