Indexed by:
Abstract:
The development and utilization of biomass resources could contribute to new materials for long-term sustainable energy storage and environmental applications, reduce environmental impacts, and meet the urgent need for green and sustainable development strategies. Herein, a bimetallic metal-phenolic network (MPN) was applied to incorporate different metallic element species into cattle skin and fabricate collagen-fiber-derived complex oxide nanofibers using natural polyphenols (Myrica tannins). Direct thermal transition of these biomass-MPN composites generates hierarchically porous nanofibers possessing micro- and mesoporous architectures along with a well-preserved macroscopic structure. The pore system and complex oxide composition provide excellent photocatalytic performance. This low-cost, simple, and readily scalable MPN-based approach provides a straightforward route to synthesize nanostructured materials directly from biomass, which could play important roles in a wide range of potential applications.
Keyword:
Reprint 's Address:
Version:
Source :
CHEMISTRY-AN ASIAN JOURNAL
ISSN: 1861-4728
Year: 2018
Issue: 8
Volume: 13
Page: 972-976
3 . 6 9 8
JCR@2018
3 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:209
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 15
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: