Indexed by:
Abstract:
When portability, low cost, and green energy requirements are considered, the search for an electricity generator harvesting environmental energy based on available cheap commercial materials and simple fabrication techniques becomes significantly important. In this study, the capability of ultrasoft and cuttable paper-based triboelectric nanogenerator (P-TENG) to harvest mechanical energy is demonstrated. The P-TENG maintains the excellent softness of tissue paper and has the characteristics of light weight (similar to 87 g/m(2)), high electric conductivity (6 Omega/square), and low cost (similar to$3.00/m(2)). More importantly, the P-TENG can be cut by the end-user to modify its size and shape and still function properly. The mechanical energies available during cleaning processes, the energy associated with the body's motion, sound energy, and wind energy can be directly harvested by using the P-TENG. The high portability of the P-TENG, the simple and scalable fabrication processes, low cost, and its ability to harvest mechanical energy make the P-TENG important for the development of green, portable, energy-harvesting devices.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
NANO ENERGY
ISSN: 2211-2855
Year: 2018
Volume: 44
Page: 279-287
1 5 . 5 4 8
JCR@2018
1 6 . 8 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:284
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: