Indexed by:
Abstract:
A highly sensitive and selective electrochemiluminescent (ECL) biosensor for the determination of adenosine was developed. Single DNA (capture DNA) was immobilized on the gold electrode through Au-thiol interaction at first. Another DNA modified with tris(2,2'-bipyridyl) ruthenium(II)-doped silica nanoparticles (Ru-SNPs) that contained adenosine aptamer was then modified on the electrode surface through hybridizing with the capture DNA. In the presence of adenosine, adenosine-aptamer complex is produced rather than aptamer-DNA duplex, resulting with the dissociation of Ru-SNPs-labeled aptamer from the electrode surface and the decrease in the ECL intensity. The decrease of ECL intensity has a direct relationship with the logarithm of adenosine concentration in the range of 1.0 x 10(-10) to 5.0 x 10(-6) mol L-1. The detection limit of the proposed method is 3.0 x 10(-11) mol L-1. The existence of guanosine, cytidine and uridine has little interference with adenosine detection, demonstrating that the developed biosensor owns a high selectivity to adenosine. In addition, the developed biosensor also demonstrates very good reusability, as after being reused for 30 times, its ECL signal still keeps 91% of its original state. (C) 2010 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANALYTICA CHIMICA ACTA
ISSN: 0003-2670
Year: 2011
Issue: 1-2
Volume: 684
Page: 121-125
4 . 5 5 5
JCR@2011
5 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 26
SCOPUS Cited Count: 26
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: