Indexed by:
Abstract:
Accurate electric load forecasting can prevent the waste of power resources and plays a crucial role in smart grid. The time series of electric load collected by smart meters are non-linear and non-stationary, which poses a great challenge to the traditional forecasting methods. In this paper, sparse representation model (SRM) is proposed as a novel approach to tackle this challenge. The main idea of SRM is to obtain sparse representation coefficients by the training set and the part of over-complete dictionary, and the rest part of over-complete dictionary multiplied with sparse representation coefficients can be used to predict the future load value. Experimental results demonstrate that SRM is capable of forecasting the complex electric load time series effectively. It outperforms some popular machine learning methods such as Neural Network, SVM, and Random Forest. © 2019, Springer Nature Switzerland AG.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 0302-9743
Year: 2019
Volume: 11204 LNCS
Page: 357-369
Language: English
0 . 4 0 2
JCR@2005
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: