Indexed by:
Abstract:
利用皮尔森相关系数法处理网络搜索数据,用灰狼算法(grey wolf optimizer,GWO)优化支持向量回归(support vector regression,SVR)中的参数,提出并实现一种基于网络搜索数据和GWO-SVR模型的旅游短期客流量预测模型,并用参数优化后的SVR对客流量进行建模预测.以四川省九寨沟和四姑娘山两个景区为例,构建GWO-SVR、ARIMA、BPNN、SVR、CS-SVR、PSO-SVR和无网络搜索数据等客流量预测模型进行实证分析.结果表明,GWO-SVR模型均优于其他模型,具有更高的预测精度.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2019
Issue: 5
Volume: 47
Page: 598-603
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: