Indexed by:
Abstract:
随着地铁线网规模的扩大,地铁客流大数据不断产生并积累,其中包含大量信息。地铁乘客出行时间是反映地铁系统运行状况和乘客满意度的重要指标。传统的地铁乘客出行时间预测没有充分利用客流大数据,因此有进一步提升空间。文章基于地铁客流大数据,整理了大量乘客出行属性和实际出行时间的数据集,并采用多种回归模型建立地铁乘客出行时间预测模型。结果表明:使用径向基核函数的支持向量回归模型预测效果最好,可较好应用于乘客出行时间预测,为乘客出行规划及运营公司调度提供参考。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
现代城市轨道交通
ISSN: 1672-7533
CN: 11-5183/U
Year: 2020
Issue: 09
Page: 70-76
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: