Indexed by:
Abstract:
为克服光照不均、对比度低、软性渗出干扰等给眼底图像中硬性渗出(HEs)检测带来的困难,提出一种基于支持向量机(SVM)的检测方法.首先对眼底图像进行数学形态学结合阈值方法的粗分割,得到硬性渗出的候选区域;然后在候选区域上提取特征,并在特征提取中引入调幅-调频(AM-FM)特征;接着用SVM分类出HEs和非HEs.在公开的糖尿病视网膜病变图像库DIARETDB1上进行实验,结果敏感性为91.1%,特异性为94.7%.实验表明该方法可对HEs进行可靠检测.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机与现代化
ISSN: 1006-2475
CN: 36-1137/TP
Year: 2014
Issue: 4
Page: 33-37
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: