Indexed by:
Abstract:
Electrochemical nitrogen reduction reaction (eNRR) is recognized as a promising approach for ammonia synthesis, which is, however, impeded by the inert nitrogen and the unavoidable competing hydrogen evolution reaction (HER). Here, a Mo-PTA@CNT electrocatalyst in which Mo species are anchored on the fourfold hollow sites of phosphotungstic acid (PTA) and closely embedded in multi-walled carbon nanotubes (CNT) for immobilization is designed and synthesized. Interestingly, the catalyst presents a high ammonia yield rate of 51 +/- 1 mu g h(-1) mg(cat.)(-1) and an excellent Faradaic efficiency of 83 +/- 1% at -0.1 V versus RHE under ambient conditions. The concentrations of NH4+ are also quantitatively calculated by H-1 NMR spectra and ion chromatography. Isotopic labeling identifies that the N atom of the formed NH3 originates from N-2. The controlled experiments confirm a strong interaction between Mo-PTA and N-2 with an adsorption energy of 50.46 kJ mol(-1) and activation energy of 21.36 kJ mol(-1). More importantly, due to CNT's gas storage and hydrophobicity properties, there is a fourfold increase in N-2 content. The concentration of H2O is reduced by more than half at the interface of the electrode. Thus, the activity of eNRR can be significantly improved with ultrahigh electron selectivity.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCED FUNCTIONAL MATERIALS
ISSN: 1616-301X
Year: 2021
Issue: 22
Volume: 31
1 9 . 9 2 4
JCR@2021
1 8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:142
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 57
SCOPUS Cited Count: 58
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: