Indexed by:
Abstract:
The clinical efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)-based targeted molecular therapies (TMT) is inevitably hampered by the development of acquired drug resistance in non-small cell lung cancer (NSCLC) treatment. Sonodymanic therapy (SDT) is a promising new cancer treatment approach, but its effects are restricted by tumor hypoxia. Herein, a nanoplatform fabricated by erlotinib-modified chitosan loading sonosensitizer hematoporphyrin (HP) and oxygen-storing agent perfluorooctyl bromide (PFOB), namely CEPH, was developed to deliver HP to erlotinib-sensitive cells. CEPH with ultrasound could alleviate hypoxia inside the three-dimensional multicellular tumor spheroids, suppress NSCLC cell growth under normoxic or hypoxic condition, and enhance TMT/SDT synergistic effects through elevated production of reactive oxygen species, decrease of mitochondrial membrane potential, and down-regulation of the expression of the proteins EGFR, p-EGFR, and HIF-1 alpha. Hence, CEPH could be a potential nanoplatform to improve the efficacy of oxygen dependent SDT and overcome hypoxia-induced TMT resistance for enhanced synergistic TMT/SDT.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CARBOHYDRATE POLYMERS
ISSN: 0144-8617
Year: 2021
Volume: 274
1 0 . 7 2 3
JCR@2021
1 0 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 25
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: