Indexed by:
Abstract:
Organic mercury including methyl-mercury and ethyl-mercury (CH3Hg+ and C2H5Hg+) has high toxicity and bio-accumulation, and thus is easy to generate bio-amplification in food chain. Hence, the specific detection of organic mercury has great significance for objectively assessing the health risk of mercury in seafood. We herein designed an aptamer (AS-T7), which consists of a silver nanoclusters (AgNCs) scaffold sequence (AS) and a T-rich sequence (AT7), for simultaneously synthetizing DNA-templated AgNCs and recognizing organic mercury, and further developed a label-free fluorescent method for the sensitive and specific determination of organic mercury (CH3Hg+ and C2H5Hg+ total concentration) by using DNA-templated AgNCs as signal. Without organic mercury, Ag+ in the mixture of aptamer and Ag+ was bond on AS of aptamer to form AS-templated AgNCs after reduction, and thus emitted strong fluorescence. Whereas, in the presence of organic mercury, CH3Hg+/C2H5Hg+ was bond on AT7 of aptamer to generate photoinduced electron transfer (PET) between CH3Hg+/C2H5Hg+ and AS-templated AgNCs, and thus results in fluorescence quenching of AS-templated AgNCs. The fluorescent method could be used to rapidly detect organic mercury with a detection limit of 5.0 nM (i.e. 1.01 ng Hg/g), which meets the U.S. EPA standard of 0.3 mg/kg (wet). The method was successfully used to detect organic mercury in water and fish muscle with a recovery of 96%–104% and an inter-days RSD (n = 5) © 2021 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Biosensors and Bioelectronics
ISSN: 0956-5663
Year: 2021
Volume: 183
1 2 . 5 4 5
JCR@2021
1 0 . 7 0 0
JCR@2023
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 23
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: