Indexed by:
Abstract:
Lithium (Li) has garnered considerable attention as an alternative anodes of next-generation high-performance batteries owing to its prominent theoretical specific capacity. However, the commercialization of Li metal anodes (LMAs) is significantly compromised by non-uniform Li deposition and inferior electrolyte-anode interfaces, particularly at high currents and capacities. Herein, a hierarchical three-dimentional structure with CoSe2-nanoparticle-anchored nitrogen-doped carbon nanoflake arrays is developed on a carbon fiber cloth (CoSe2-NC@CFC) to regulate the Li nucleation/plating process and stabilize the electrolyte-anode interface. Owing to the enhanced lithiophilicity endowed by CoSe2-NC, in situ-formed Li2Se and Co nanoparticles during initial Li nucleation, and large void space, CoSe2-NC@CFC can induce homogeneous Li nucleation/plating, optimize the solid electrolyte interface, and mitigate volume change. Consequently, the CoSe2-NC@CFC can accommodate Li with a high areal capacity of up to 40 mAh cm(-2). Moreover, the Li/CoSe2-NC@CFC anodes possess outstanding cycling stability and lifespan in symmetric cells, particularly under ultrahigh currents and capacities (1600 h at 10 mA cm(-2)/10 mAh cm(-2) and 5 mA cm(-2)/20 mAh cm(-2)). The Li/CoSe2-NC@CFC//LiFePO4 full cell delivers impressive long-term performance and favorable flexibility. The developed CoSe2-NC@CFC provides insights into the development of advanced Li hosts for flexible and stable LMAs.
Keyword:
Reprint 's Address:
Version:
Source :
ADVANCED SCIENCE
ISSN: 2198-3844
Year: 2022
Issue: 9
Volume: 9
1 5 . 1
JCR@2022
1 4 . 3 0 0
JCR@2023
ESI Discipline: PHYSICS;
ESI HC Threshold:55
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 106
SCOPUS Cited Count: 96
ESI Highly Cited Papers on the List: 14 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2