Indexed by:
Abstract:
This Letter proposes the use of atomic layer deposition (ALD) encapsulation as a stability-improving approach for a quantum-dot micro-structural array (QDMA) with a random rough interface. The QDMA is first prepared by screen printing technology on an edge-lit light-guide plate (LGP) for backlight application. A flexible aluminum oxide film is then densely deposited onto the rough surface of the QDMA. The influences of two key factors, the reaction temperature and deposition thickness, on the encapsulation effect and output performance of this QD backlight are discussed. After ALD encapsulation, the water vapor transmission rate was measured to be less than 0.014 g/(m(2) day). The average luminance of the encapsulated QD backlight remained stable after continuous working for 200 h, while an unencapsulated QD backlight lost over 50% of its initial luminance. The complete attenuation trend for the encapsulated QD backlight was analyzed in a more demanding testing environment, and results showed that 80% (>3000 cd/m(2)) of the initial luminance was maintained after 250 h at a high temperature of 70 degrees C and a relative humidity of 90%. The mechanism behind these experimental results is also discussed.(C) 2021 Optica Publishing Group
Keyword:
Reprint 's Address:
Email:
Version:
Source :
OPTICS LETTERS
ISSN: 0146-9592
Year: 2022
Issue: 1
Volume: 47
Page: 166-169
3 . 6
JCR@2022
3 . 1 0 0
JCR@2023
ESI Discipline: PHYSICS;
ESI HC Threshold:55
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 21
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: