Indexed by:
Abstract:
Merging cryptographic primitive technologies and physical unclonable functions (PUFs) have become a new paradigm of one-way encryption. Herein, the authors report a dynamic PUF cryptographic primitive based on plasmonic fluorescence blinking from single or a few dye molecules embedded within the nanogaps of plasmonic patch nanoantennas. This cryptographic primitive carries two sets of high-capacity optical codes: the fluorescence blinking of the embedded dye molecules and multi-color light scattering enabled by the plasmonic nanoantennas. The former allows the generation of temporal binary codes from a large number of individual plasmonic patch nanoantennas by holding either "1" (bright state) or "0" (dark state), while the latter provides a permanent color-based novenary code that acts as a decryption channel for authentication. Benefiting from the high electromagnetic field localized within the nanogaps and the large Purcell enhancement of the plasmonic nanoantennas, the fluorescence blinking is readily detectable by a common fluorescence microscope with a mercury arc lamp as a low-power excitation source. The developed dynamic PUF codes are robustly and accurately authenticated by a self-programmed computer vision algorithm. This study revolutionizes the conventional static PUF encryption to nanophotonics-based dynamic encryption, opening a new avenue for next-generation advanced anti-counterfeiting.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCED FUNCTIONAL MATERIALS
ISSN: 1616-301X
Year: 2022
Issue: 30
Volume: 32
1 9 . 0
JCR@2022
1 8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 22
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: