Indexed by:
Abstract:
Anticounterfeiting techniques based on physical unclonable functions exhibit great potential in security protection of extensive commodities from daily necessities to high-end products. Herein, we propose a facile strategy to fabricate an unclonable super micro fingerprint (SMFP) array by introducing in situ grown perovskite crystals for multilevel anticounterfeiting labels. The unclonable features are formed on the basis of the differential transportation of a microscale perovskite precursor droplet during the inkjet printing process, coupled with random crystallization and Ostwald ripening of perovskite crystals originating from their ion crystal property. Furthermore, the unclonable patterns can be readily tailored by tuning in situ crystallization conditions of the perovskite. Three-dimensional height information on the perovskite patterns are introduced into a security label and further transformed into structural color, significantly enhancing the capacity of anticounterfeiting labels. The SMFPs are characterized with tunable multilevel anticounterfeiting properties, including macroscale patterns, microscale unclonable pattern, fluorescent two-dimensional pattens, and colorful three-dimensional information.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2020
Issue: 35
Volume: 12
Page: 39649-39656
9 . 2 2 9
JCR@2020
8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:196
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 69
SCOPUS Cited Count: 72
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2