Indexed by:
Abstract:
为快速检测并定位光伏阵列中出现的故障,提出一种新的传感器布局策略,通过优化电压传感器的位置减少电压传感器的数量,同时显化故障的特征.然后,将定位问题转化为分类问题,选用极限学习机(ELM),将最大功率点处的电压数据作为输入训练分类模型.结合实验室屋顶光伏并网发电平台获取的故障数据,对健康状态和所设置的3种故障状态下细化的故障共18种类别,进行分类模型的建立与测试.实验表明,应用本模型故障检测与区域定位的精确率达99.52%,优于所对比的支持向量机、多层感知机网络和随机森林的诊断结果.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2022
Issue: 04
Volume: 50
Page: 475-482
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: