Indexed by:
Abstract:
Rechargeable aqueous zinc-ion batteries have great promise for becoming next-generation storage sys-tems, although the irreversible intercalation of Zn2+ and sluggish reaction kinetics impede their wide application. Therefore, it is urgent to develop highly reversible zinc-ion batteries. In this work, we mod-ulate the morphology of vanadium nitride (VN) with different molar amounts of cetyltrimethylammonium bromide (CTAB). The optimal electrode has porous architecture and excellent electrical conductivity, which can alleviate volume expansion/contraction and allow for fast ion transmis-sion during the Zn2+ storage process. Furthermore, the CTAB-modified VN cathode undergoes a phase transition that provides a better framework for vanadium oxide (VOx). With the same mass of VN and VOx, VN provides more active material after phase conversion due to the molar mass of the N atom being less than that of the O atom, thus increasing the capacity. As expected, the cathode displays an excellent electrochemical performance of 272 mAh g-1 at 5 A g-1, high cycling stability up to 7000 cycles, and excellent performance over a wide temperature range. This discovery creates new possibilities for the development of high-performance multivalent ion aqueous cathodes with rapid reaction mechanisms. (c) 2023 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2023
Volume: 640
Page: 487-497
9 . 4
JCR@2023
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1