Indexed by:
Abstract:
Composite tape-springs (CTS) structure has been applied to spatial developable structures due to its bistability. There is growing interest in smart driving of the CTS-based structures because of the limitations on the working environment. Here, we propose a detailed analysis of the smart driving of the CTS structure. This is achieved by using smart materials to develop a bilayered CTS intelligent structure: the smart material forms the active layer to generate stress/strain to drive the structure; the CTS layer acts as a passive layer where its intrinsic bistability, designability further enriches the diversity of intelligent morphing structures. A theoretical analytical model is developed to anticipate the bistability; the stability criteria are then determined to guide the intelligent morphing design. These will facilitate the future smart driving design of aerospace deployable structures. © Published under licence by IOP Publishing Ltd.
Keyword:
Reprint 's Address:
Email:
Source :
ISSN: 1742-6588
Year: 2022
Issue: 1
Volume: 2403
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: