• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Tang, Y. (Tang, Y..) [1] | Wang, Y. (Wang, Y..) [2] | Flesch, R.C.C. (Flesch, R.C.C..) [3] | Jin, T. (Jin, T..) [4]

Indexed by:

Scopus

Abstract:

Magnetic fluid hyperthermia damages malignant cells by keeping the therapeutic temperature within a specific range after magnetic nanoparticles (MNPs) are exposed to an alternating magnetic field. The temperature distribution inside bio-tissue is usually predicted by a classic Pennes bio-heat transfer equation, which considers a heat source due to a homogeneous distribution for MNPs. Aiming at this problem, this study compares the Pennes model to a porous heat transfer model, named local thermal non-equilibrium equation, by considering an experiment-based MNPs distribution, and evaluates the thermal damage degree for malignant tissue by two different thermal dose methods. In addition, this study evaluates the effect of porosity and different blood perfusion rates on both effective treatment temperature and equivalent thermal dose. Simulation results demonstrate that different bio-heat transfer models can result in significant differences in both the treatment temperature profile and the thermal damage degree for tumor region under the same power dissipation of MNPs. Furthermore, scenarios considering a temperature-dependent blood perfusion rate or a lower porosity can have a positive effect on the temperature distribution inside tumor, while having a lower value in the maximum equivalent thermal dose in both thermal dose evaluation methods. © 2023 IOP Publishing Ltd.

Keyword:

heat transfer equation magnetic hyperthermia nanoparticles distribution therapeutic temperature thermal damage degree

Community:

  • [ 1 ] [Tang, Y.]College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350116, China
  • [ 2 ] [Wang, Y.]College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350116, China
  • [ 3 ] [Flesch, R.C.C.]Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, SC, Florianópolis, 88040-900, Brazil
  • [ 4 ] [Jin, T.]College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China

Reprint 's Address:

  • [Tang, Y.]College of Physics and Information Engineering, China

Show more details

Related Keywords:

Source :

Journal of Physics D: Applied Physics

ISSN: 0022-3727

Year: 2023

Issue: 14

Volume: 56

3 . 1

JCR@2023

3 . 1 0 0

JCR@2023

ESI HC Threshold:30

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 3

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:910/10050049
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1