• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Tang, Yundong (Tang, Yundong.) [1] (Scholars:汤云东) | Wang, Yuesheng (Wang, Yuesheng.) [2] | Flesch, Rodolfo C. C. (Flesch, Rodolfo C. C..) [3] | Jin, Tao (Jin, Tao.) [4] (Scholars:金涛)

Indexed by:

Scopus SCIE

Abstract:

Magnetic hyperthermia regulates the therapeutic temperature within a specific range to damage malignant cells after exposing the magnetic nanoparticles inside tumor tissue to an alternating magnetic field. The therapeutic temperature of living tissues can be generally predicted using Pennes' bio-heat equation after ignoring both the inhomogeneity of biological structure and the microstructural responses. Although various of the bio-heat transfer models proposed in literature fix these shortages, there is still a lack of a comprehensive report on investigating the discrepancy for different models when applied in the magnetic hyperthermia context. This study compares four different bio-heat equations in terms of the therapeutic temperature distribution and the heat-induced damage situation for a proposed geometric model, which is established based on computed tomography images of a tumor bearing mouse. The therapeutic temperature is also used as an index to evaluate the effect of two key relaxation times for the phase lag behavior on bio-heat transfer. Moreover, this work evaluates the effects of two blood perfusion rates on both the treatment temperature and the cumulative equivalent heating minutes at 43 degrees C. Numerical analysis results reveal that relaxation times for phase-lag behavior as well as the porosity for living tissues directly affect the therapeutic temperature variation and ultimately the thermal damage for the malignant tissue during magnetic hyperthermia. The dual-phase-lag equation can be converted into Pennes' equation and simple-phase-lag equation when relaxation times meet specific conditions during the process of heat transfer. In addition, different blood perfusion rates can result in an amplitude discrepancy for treatment temperature, but this parameter does not change the characteristics of thermal propagation during therapy.

Keyword:

Bio-heat transfer Blood perfusion rate Magnetic hyperthermia Phase lag behavior Therapeutic temperature

Community:

  • [ 1 ] [Tang, Yundong]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350116, Peoples R China
  • [ 2 ] [Wang, Yuesheng]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350116, Peoples R China
  • [ 3 ] [Flesch, Rodolfo C. C.]Univ Fed Santa Catarina, Dept Automacao & Sistemas, BR-88040900 Florianopolis, SC, Brazil
  • [ 4 ] [Jin, Tao]Fuzhou Univ, Coll Elect Engn & Automat, Fuzhou 350116, Peoples R China

Reprint 's Address:

Show more details

Related Keywords:

Source :

JOURNAL OF THERMAL BIOLOGY

ISSN: 0306-4565

Year: 2023

Volume: 118

2 . 9

JCR@2023

2 . 9 0 0

JCR@2023

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:99/10054386
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1