Indexed by:
Abstract:
Quantum dot color conversion (QDCC) is an effective strategy to realize the full color of new display devices and improve the display color gamut, but the poor environmental stability of QD limits its application and development. Based on the atomic layer deposition(ALD) process with self-limiting surface reaction characteristics, this paper explores the in⁃situ growth of dense alumina encapsulation film on a quantum-dot color conversion film (QDCCF). This encapsulation method effectively combines a high light transmittance and high dense material with a tightly bonded process. The simulation results show that the light intensity of the QDCCF encapsulated by alumina reaches 94.9% of that of the unencapsulated one. Furthermore, the experimental results also show that the light transmittance of the substrate with alumina encapsulation is 96.4% of the blank substrate. Moreover, after working for 240 h in a high temperature and high humidity (85 ℃, 85% RH) environment, the light conversion efficiency of the encapsulated QDCCF remains 60.8% of the initial, which is 63.9% higher than the unencapsulated (11.43%). The encapsulation method effectively improves the stability of QDCCF while the light intensity is not affected, which provides a feasible idea for improving the stability of QDCCF, and expands the application of ALD process in the field of photoelectric display, which has important scientific significance and application prospects. © 2023 Chines Academy of Sciences. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Chinese Journal of Luminescence
ISSN: 1000-7032
CN: 22-1116/O4
Year: 2023
Issue: 6
Volume: 44
Page: 1059-1068
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: