Indexed by:
Abstract:
Wearable motion-capture systems offer promising avenues for human lower limb rehabilitation. However, unstable data transmission and attitude estimation challenge their practical application. Aiming at this problem, a reliable method utilizing wearable inertial sensors for rehabilitation applications is innovatively proposed and implemented within our designed wearable motion-capture systems tailored to patients with impaired lower limbs. A stable data transmission process based on star-type Bluetooth body sensor networks is designed by establishing a connection parameter setting method to guarantee reliable attitude estimation. Then, a robust attitude estimating method based on an improved gradient descent method is proposed to promote the anti-interference capability of the algorithm by introducing trust coefficients. Lower limb motion-capture experiments are conducted, and results show that the proposed method enables the system to maintain a package loss rate of no more than 0.24% and has a maximum coefficient of variation (CV) of 5.9% during the data transmission process. Attitude estimation reliability experiments reveal that the proposed algorithm substantially enhances anti-interference capabilities while preserving estimation accuracy. Compared to the state-of-the-art method, under acceleration shock, estimation errors decrease by up to 39.1% (roll), 42.9% (pitch), and 20.2% (yaw). When exposed to external magnetic field interference, conventional estimation algorithms falter, whereas the proposed method maintains an average error within 2°. Significance analysis underscores the method's distinctiveness at the 0.05% significance level ( p © 2001-2012 IEEE.
Keyword:
Reprint 's Address:
Email:
Source :
IEEE Sensors Journal
ISSN: 1530-437X
Year: 2023
Issue: 21
Volume: 23
Page: 26677-26690
4 . 3
JCR@2023
4 . 3 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: