• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Chen, Liting (Chen, Liting.) [1] | Zheng, Bingying (Zheng, Bingying.) [2] | Ye, Jinhua (Ye, Jinhua.) [3] | Wu, Haibin (Wu, Haibin.) [4]

Indexed by:

EI

Abstract:

Flexible tactile sensors with high sensitivity typically suffer from a dramatically reduces pressure resolution with increasing pressure, resulting in narrow linear ranges and limited application scenarios. Herein, a capacitive tactile sensor based on cone-shaped electrodes (CSE) that can maintain high sensitivity over a broad linearity range is proposed. The linear response comes from the novel sensing mechanism based on the change in the facing electrode area and the rational design of the conical architecture. Finite element analysis (FEA) confirms that the interfacial contact area between the elastic electrodes and the dielectric layer can respond linearly to pressure over a broad spectrum. Based on this strategy, the fabricated sensors perform a high sensitivity (0.23 kPa−1) and superior linearity (R2 = 0.999) across a wide pressure range of up to 130 kPa. The sensors demonstrate several key features, such as good repeatability, fast response speed, low detection limit, and high durability. These attributes enable the successful use of the sensors for monitoring artery pulses and providing weighting capabilities to robots, showing promising potential for applications in daily health monitoring and human-machine interaction. © 2023 Wiley-VCH GmbH.

Keyword:

Capacitive sensors Electrodes Finite element method Human robot interaction Tactile sensors

Community:

  • [ 1 ] [Chen, Liting]School of Mechanical Engineering and Automation, Fuzhou University, Fujian; 350108, China
  • [ 2 ] [Zheng, Bingying]School of Mechanical Engineering and Automation, Fuzhou University, Fujian; 350108, China
  • [ 3 ] [Ye, Jinhua]School of Mechanical Engineering and Automation, Fuzhou University, Fujian; 350108, China
  • [ 4 ] [Ye, Jinhua]The Key Laboratory of Special Intelligent Equipment Safety Measurement and Control, Fujian; 350000, China
  • [ 5 ] [Wu, Haibin]School of Mechanical Engineering and Automation, Fuzhou University, Fujian; 350108, China
  • [ 6 ] [Wu, Haibin]The Key Laboratory of Special Intelligent Equipment Safety Measurement and Control, Fujian; 350000, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

Advanced Materials Technologies

Year: 2023

Issue: 21

Volume: 8

6 . 4

JCR@2023

6 . 4 0 0

JCR@2023

JCR Journal Grade:1

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 8

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Affiliated Colleges:

Online/Total:995/13901082
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1