Indexed by:
Abstract:
Photodynamic therapy (PDT) has been considered as a promising and noninvasive strategy for clinical cancer treatment. Nonetheless, building a smart "off-on" theranostic PDT platform to spatiotemporally control the generation of reactive oxygen species in the PDT treatment still remains challenging. Here, we have rationally developed photoswitching upconversion nanoparticles (UCNPs) with orthogonal emissive properties in response to two distinct near-infrared (NIR) emissions at 808 and 980 nm, i.e., red emission with 980 nm excitation and green emission with 808 nm excitation. Unlike traditional photoswitching UCNPs, these specially designed core-shell-shell structured UCNPs do not require compli- cated multilayer doping as their red and green upconversion luminescence both originate from the same activator Er3+ ions in the core structure. As a proof of concept, we have demonstrated the capability of these orthogonal emissive UCNPs for imaging-guided PDT in a real-time manner, where the red emission excited by 980 nm light is used to trigger PDT and the green emission with 808 nm excitation is to diagnose and monitor the therapeutic treatment. Our study suggests that such specially designed UCNPs with orthogonal emissions hold great promise for NIR light-targeted and imaging-guided therapy under precisely spatiotemporal control.
Keyword:
Reprint 's Address:
Email:
Source :
ACS NANO
ISSN: 1936-0851
Year: 2019
Issue: 9
Volume: 13
Page: 10405-10418
1 4 . 5 8 8
JCR@2019
1 5 . 8 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 105
SCOPUS Cited Count: 112
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: