Indexed by:
Abstract:
Metallic resonators allow the manipulation of electromagnetic fields in subwavelength volumes for strong lightmatter interaction, underpinning emerging flat-optics devices. Metamaterials designed with optimized effective mode volume (Veff) for stimulating and maximizing the utilization of high-density photons are highly desirable for sensing applications. Here, we demonstrate a bowtie-type terahertz (THz) metallic aperture metamaterial structure with low Veff for enhanced biosensing. The device leverages the inherent characteristic of the femtosecond laser fabrication process enabling wedge cavities down to 3 mu m by tailoring the pulse energy, whose sensing performance is superior to trapezoidal ones. Such a substrate-free, microcavity metallic metamaterial sensor with extremely strong interactions achieves an experimentally normalized sensitivity of 0.654 RIU-1, and demonstrates the detection of L-proline down to 0.87 nmol. These findings provide new insights into the design and optimization of efficient THz metamaterials with tightly confined fields for ultrasensitive biomolecular detection.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
OPTICS AND LASER TECHNOLOGY
ISSN: 0030-3992
Year: 2024
Volume: 180
4 . 6 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: