Indexed by:
Abstract:
InP quantum dots have received intensive attention due to their tunable emission wavelengths, narrow bandwidths, and high color purity. Nevertheless, InP quantum dots exhibit notable instability in a complex environment due to their highly oxidizable properties. In this study, we present a strategy for synthesizing InP@Al2O3 nanocomposites that have InP quantum dots evenly embedded in a hybrid substrate containing Al2O3 and coupling-interconnection layers of Si and Al. In addition, we used high-power UV irradiation to repair the defects generated during the synthesis process, leading to photoluminescence (PL) intensity increase of more than 10 times. InP@Al2O3 nanocomposites have demonstrated up to 9 h of laser stability, 30 days of water stability and acid stability and 20 days of alkali stability. It has far exceeded that of InP quantum dots and commercially available phosphors. Distal-type light-emitting diodes (LEDs) with stable and standard white emission can be realized by combining red and green InP@Al2O3 nanocomposites with blue LED chips.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF MATERIALS CHEMISTRY C
ISSN: 2050-7526
Year: 2024
Issue: 4
Volume: 13
Page: 1883-1892
5 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: