Indexed by:
Abstract:
This work proposes a sigma-pi hyperconjugation strategy to establish interlayer charge transport channels (CTC) in supramolecular organic nanostructures. A series of ullazine-based molecular semiconductors were designed and synthesized successfully by engineering end groups to demonstrate the sigma-pi hyperconjugation that unlocks the quantum confinement of photogenerated charges in pi-conjugated planes. Ullazine grafted with tert-butyl (U-t-Bu) showed a J-cross-stacking model in which the cross-stacked U-t-Bu molecular pair smoothly glides along the elongated dimension, forming a Z-schemed interlayer CTC by sigma-pi hyperconjugations between C-H sigma-bonds of tert-butyl end group and pi-bonds of ullazines in adjacent layers along the stacking dimension. Consequently, upon photoexcitation of ullazine-based supramolecular nanoaggregates in aqueous solution, the formed Frenkel excitons are dissociated to charge-separated excitons by the interlayer charge separation channels, undergoing an ultrafast charge transfer within 0.58 ps and an ultrafast charge separation within 0.67 ps. The Z-schemed charge separation between adjacent layers leads to a significantly enhanced hydrogen yield over U-t-Bu/PVP/Pt, with a hydrogen evolution rate of 369.9 mu molg-1h-1 and an apparent quantum yield of 1.46% at 420 nm. It is 3.8-fold larger than that of ullazine modified with methoxy (U-OMe), without the sigma-pi hyperconjugation.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS CATALYSIS
ISSN: 2155-5435
Year: 2025
Issue: 4
Volume: 15
Page: 3267-3275
1 1 . 7 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: