Indexed by:
Abstract:
Presented herein are the delicate design and synthesis of S-scheme NiTiO3 /CdS heterostructures composed of CdS nanoparticles anchored on the surface of NiTiO3 nanorods for photocatalytic CO2 reduction. Systematic physicochemical studies demonstrate that NiTiO3 /CdS hybrid empowers superior light absorption and enhanced CO2 capture and activation. Electron spin resonance validates that the charge carriers in NiTiO3 /CdS follow a S-scheme transfer pathway, which powerfully impedes their recombination and promotes their separation. Importantly, the photogenerated holes on CdS are effectively consumed at the hero-interface by the electron from NiTiO3 , preventing the photo-corrosion of the metal sulfide. As a result, with Co(bpy)3 2 + as a cocatalyst, NiTiO3 /CdS displays a considerable performance for CO2 reduction, affording a high CO yield rate of 20.8 mu mol h-1 . Moreover, the photocatalyst also manifests substantial stability and good reusability for repeated CO2 reaction cycles in the created tandem photochemical system. In addition, the possible CO2 photoreduction mechanism is constructed on the basis of the intermediates monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy. (c) 2025 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
ISSN: 1005-0302
Year: 2025
Volume: 234
Page: 82-89
1 1 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3