• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Chen, L. (Chen, L..) [1] | Yao, P. (Yao, P..) [2] | Li, W. (Li, W..) [3] | Huang, Q. (Huang, Q..) [4] | Chen, J. (Chen, J..) [5] | Zhang, H. (Zhang, H..) [6] | Wang, X. (Wang, X..) [7]

Indexed by:

Scopus

Abstract:

3D-Printed quasi-solid-state microsupercapacitors (MSCs) present immense potential as next-generation miniature energy storage devices, offering superior power density, excellent flexibility, and feasible on-chip integration. However, the challenges posed by formulating 3D printing inks with high-performance and ensuring efficient ionic transport in thick electrodes hinder the development of advanced MSCs with high areal energy density. Herein, we report 3D-printed ultrahigh-energy-density asymmetric MSCs with latticed electrodes, fabricated using Ni-Co-S/Co(OH)2/carbon nanotubes/reduced graphene oxide (Ni-Co-S/Co(OH)2/CNTs/rGO) positive electrode ink and activated carbon (AC)/CNTs negative electrode ink. The latticed electrodes feature abundant hierarchical pores and an interconnected conductive network formed by coupling CNTs and rGO (or AC), enabling efficient ion and electron transport even in thick electrodes. The 3D-printed asymmetric MSCs with three-layer latticed electrodes deliver an impressive areal energy density of 543 μWh cm-2 and a high areal capacitance of 1.74 F cm-2 at 1 mA cm-2, nearly double the performance of planar electrodes under identical conditions. Furthermore, the device demonstrates excellent cycling stability (80% retention of the initial capacitance after 5000 cycles). This work advances the field of 3D printing for energy storage applications and provides design principles for developing integrated flexible MSCs. © 2025 American Chemical Society.

Keyword:

3D printing asymmetric supercapacitor graphene miniature energy storage quasi-solid-state

Community:

  • [ 1 ] [Chen L.]College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, China
  • [ 2 ] [Yao P.]College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, China
  • [ 3 ] [Li W.]College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, China
  • [ 4 ] [Li W.]Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, 213000, China
  • [ 5 ] [Huang Q.]College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, China
  • [ 6 ] [Chen J.]College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
  • [ 7 ] [Zhang H.]College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
  • [ 8 ] [Wang X.]College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, China
  • [ 9 ] [Wang X.]Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, 213000, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

ACS Applied Materials and Interfaces

ISSN: 1944-8244

Year: 2025

Issue: 12

Volume: 17

Page: 18666-18676

8 . 5 0 0

JCR@2023

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:150/10000776
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1