Indexed by:
Abstract:
The rapid evolution of miniaturized portable and wearable electronics has significantly intensified the demand for miniature energy storage devices featuring high energy density, cost-effective fabrication, and scalable manufacturing. 3D printing of energy storage electrodes provides new possibilities for meeting these emerging needs. Herein, we present the development of 3D-printed planar asymmetric quasi-solid-state micro-super-capacitors (MSCs) with high areal energy density, utilizing cobalt hexacyanoferrate (CoHCF) as the positive electrode and activated carbon (AC) as the negative electrode. The as-prepared MSCs exhibit a broad operating potential window of 1.5 V and exceptional areal energy and power densities of 415.8 mu Wh cm-2 and 7.5 mW cm-2, respectively, along with an impressive cycling retention rate of 104.9 % even after 15,000 cycles. Furthermore, the printed MSCs display excellent deformation-tolerant ability and integrability. These results highlight the potential of CoHCF//AC asymmetric MSCs as promising candidates for miniature, flexible, and integrable energy storage applications.
Keyword:
Reprint 's Address:
Email:
Source :
CHEMICAL ENGINEERING SCIENCE
ISSN: 0009-2509
Year: 2025
Volume: 312
4 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0