Indexed by:
Abstract:
Nonlinear characteristics are essential for neuromorphic devices to process high-dimensional and unstructured data. However, enabling a device to realize a nonlinear response under the same stimulation condition is challenging as this involves two opposing processes: simultaneous charge accumulation and recombination. In this study, a hybrid transistor based on a mixed-halide perovskite was fabricated to achieve dynamic nonlinear changes in synaptic plasticity. The utilization of a light-induced mixed-bandgap structure within the mixed perovskite film has been demonstrated to increase the recombination paths of photogenerated carriers of the hybrid film, thereby promoting the formation of nonlinear signals in the device. The constructed heterojunction optoelectronic synaptic transistor, formed by combining a mixed-halide perovskite with a p-type semiconductor, generates dynamic nonlinear decay responses under 400 nm light pulses with an intensity as low as 0.02 mW/cm2. Furthermore, it has been demonstrated that nonlinear photocurrent growth can be achieved under 650 nm light pulses. It is important to note that this novel nonlinear response is characterized by its dynamism. These improvements provide a novel method for expanding the modulation capability of optoelectronic synaptic devices for synaptic plasticity. © 2025 by the authors.
Keyword:
Reprint 's Address:
Email:
Source :
Photonics
Year: 2025
Issue: 7
Volume: 12
2 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: