Indexed by:
Abstract:
The detection of biomarkers is of crucial importance in reducing the morbidity and mortality of complex diseases. Thus, there is a great desire to develop highly efficient and simple sensing methods to fulfill the different diagnostic and therapeutic purposes. Herein, using tumor suppressor p53 gene as model target DNA, we developed a novel palindromic fragment-incorporated molecular beacon (P-MB) that can perform multiple functions, including recognition element, signal reporter, polymerization template and primer. Upon specific hybridization with target DNA, P-MBs can interact with each other and are extended by polymerase without any additional probes. As a result, hybridized targets are peeled off from P-MBs and initiate the next round of reactions, leading to the unique strand displacement amplification (SDA). The newly-proposed enzymatic amplification displays the detection limit as low as 100 pM and excellent selectivity in distinguishing single-base mutation with the linear response range from 100 pM to 75 nM. This is the simplest SDA sensing system so far because of only involving one type of DNA probe. This impressive sensing paradigm is expected to provide new insight into developing new-type of DNA probes that hold tremendous potential with important applications in molecular biology research and clinical diagnosis.
Keyword:
Reprint 's Address:
Version:
Source :
BIOSENSORS & BIOELECTRONICS
ISSN: 0956-5663
Year: 2017
Volume: 91
Page: 692-698
8 . 1 7 3
JCR@2017
1 0 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:226
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 28
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: