Indexed by:
Abstract:
With tunable emission in the full visible region, the ecofriendly InP quantum dots (QDs) show unique application prospects in light-emitting devices. At present, InP QDs suffer from wide-bandwidth emission, especially for electroluminescence (EL), which hinders their applications in high-performance display devices. Here, we report a facile one-pot synthesis of narrow bandwidth InP/ZnSeS/ZnS QDs using a safe phosphorus source of tris(dimethylamino)phosphine, in which the ZnSeS inner-shell layer is formed via temperature-gradient solution growth from 240 to 280 degrees C. The synthesized green QDs have a high photoluminescence quantum yield (PLQY) of 91% and full width at half maximum (fwhm) of 36 nm. Moreover, the resultant quantum dot light-emitting devices (QLEDs) also show a narrow fwhm of 42 nm, which is the narrowest emission of green InP QLEDs based on a safe phosphorus source reported so far. Further modulation of the electron injection into the device by inserting a thin layer of lithium fluoride results in a peak external quantum efficiency of 5.56%.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS APPLIED NANO MATERIALS
ISSN: 2574-0970
Year: 2023
Issue: 5
Volume: 6
Page: 3797-3802
5 . 3
JCR@2023
5 . 3 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:49
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: