Indexed by:
Abstract:
Antimony selenosulfide (Sb-2(S,Se)(3)) solar cells have achieved an efficiency of over 10.0%. However, the uncontrollable hydrothermal process makes preparing high-quality Sb-2(S,Se)(3) thin films a bottleneck for efficient Sb-2(S,Se)(3) solar cell. To address this problem, triethanolamine (TEA) additive is innovatively utilized to regulate the reaction kinetic process of Sb-2(S,Se)(3) thin films in this work. The results show that TEA chelator can realize the time-domain control of the reaction process, optimizing the Se/(S+Se) elemental distribution of Sb-2(S,Se)(3) thin film and shrinking the bandgap offset of Sb-2(S,Se)(3) thin film. Meanwhile, the (021) and (061) crystal orientation of Sb-2(S,Se)(3) thin film are enhanced and the harmful V-Se1 defects in Sb-2(S,Se)(3) solar cells are passivated. Interestingly, a uniform back surface gradient for Sb-2(S,Se)(3) thin film is formed to reduce the minority carrier recombination at the back contact, increase the photocurrent and decrease the diode current of Sb-2(S,Se)(3) solar cells. Finally, the J(sc) and FF of Sb-2(S,Se)(3) solar cells are significantly improved by 8.6% and 5.5% respectively, and the open-circuit voltage deficit of the device is reduced by 44 mV, which leads to an efficiency of 9.94% which is the highest values of Sb-2(S,Se)(3) solar cells by sodium selenosulfate system.
Keyword:
Reprint 's Address:
Version:
Source :
SMALL
ISSN: 1613-6810
Year: 2024
1 3 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: